Extended Aging of RAS Mixes with Rejuvenator

Andrew Hanz and Gerald Reinke Mathy Construction

Binder Expert Task Group Meeting Fall River, MA August 10, 2016

Acknowledgements

• MTE Staff

– Mary Ryan, Doug Herlitzka, and Steve Engber

• Mathy Construction Staff

– John Jorgenson and Chad Lewis

Motivation

- Cracking is the most prominent state agency concern
 - High levels of binder replacement, especially from RAS can cause durability concerns.
 - Materials used to soften asphalt can have unintended consequences.
- These risks aren't apparent until after longterm aging.
- Evaluate different long-term aging methods.

Background

- Current long term aging protocols in specifications
 - Binder (M320/M332): 1 PAV aging cycle.
 - Mix (R30): 5 days compacted mix aging at 85°C
- This study focuses on extended aging. Why?
 - Identify aging susceptible materials in the mix (RAS) or binder (softening additives).
 - Under current specifications most of these materials appear acceptable.

Why do we need long term aging? MnRoad (1999) Binder Grade Study

Total Cracks (Non-CL) after 4 years in-service Total Cracks (Non-CL) aft 5.5 years in service

Mix Aging Study Objectives

- Compare aging stability of bio-based rejuvenator modified binders to conventional PG asphalt.
- 2. Evaluate effects of multiple aging methods and conditioning times on physical properties and composition.

Mix Aging Study Materials

- RAS: Tear-off shingles from a commercial source in Central-WI (TOS #1)
- Asphalt: PG 58-28 and PG 52-34 sampled from MIA.
- Additives:
 - Experimental Product (EP #1)
 - Bio-based Oils (BO #1 and BO #2)
- Blends
 - PG 58-28 + 5% bio oil was used to target a final grade of PG 52-34.

Mix Aging Study PG of Binder Blends

Blend	HT PG (Unaged)	LT PG 20hr PAV	LT PG 40 hr PAV	ΔTc 20 hr PAV	ΔTc 40 hr PAV
PG 52-34	54.0	-35.3	-32.2	0.5	-1.9
PG 52-34 + 5% EP#1	52.7	-34.2	-32.7	0.56	0.61
PG 52-34 + 2.5% BO#1 + 5% EP#1	48.3	-36.5	-35.6	1.6	0.4
PG 58-28	59.6	-29.7	-25.1	-0.2	-3.1
PG 58-28 + 5% BO#1	51.2	-36.5	-33.3	-0.4	-1.5
PG 58-28 + 5% BO#2	49.3	-36.2	-33.1	0.6	-0.5

Mix Aging Study RAS Binder Properties

RAS Binder	R – value	HT PG	LT PG	ΔТс	S(60)	m(60)
TOS #1	6.03	146	6.0	-31.4	-25.4	6.0

- RAS AC content = 22.1%
- All mixes used in this study included 5% RAS by weight.

Mix Aging Study Mix Design

- Mix represents a normal surface course used for intermediate traffic levels in WI.
 - Design Traffic Level: 3 million ESALs (E3), 75 gyrations for Ndes.
 - NMAS: 12.5 mm
- Aggregate Source: Granite + 25% nat. sand
- Gradation: Fine, 70% passing the #4 sieve.
- Design AC: 5.7% (19.4% binder replacement from RAS)

Mix Aging Study Aging Methods

Aging Method	Aging Condition				
Loose Mix + PAV	As-Recovered (after 2 hrs at 135°)				
	As-Recovered + PAV (Blending Chart)				
	As-Recovered + 2PAV				
Loose Mix	12 hrs at 135°C				
	24 hrs at 135°C				
Compacted Mix	5 days at 85°C (AASHTO R30) – Test results pending				
	10 days at 85°C				
	20 days at 85°C				

Mix Aging Study Description of Work

- After the prescribed aging protocol asphalt binder was extracted and recovered from mix.
- Recovered residue evaluated using:
 - DSR: 25 mm and 4mm Parallel Plate
 - latroscan: Determine composition
- Future work will use torsion bar modulus on compacted mix samples.

Mix Aging Study

Effects of Additives and Aging on Physical Properties

- Low Temperature Properties: PG grade
- Durability: ΔTc

Two Analysis Cases

- 1. Softer Binder Grade vs. Rejuvenating additives
 - Control: PG 52-34
 - PG 52-34 +5% EP#1 and PG 52-34 +2.5% BO#1 + 5% EP#1
 - PG 58-28 modified with 5% BO#1 and BO#2. Target grade for modification is PG 52-34.
- 2. Do nothing alternative
 - Compare PG 58-28 to the PG 58-28 modified asphalts in Case #1.

4mm DSR for Determining ∆Tc & LT PG

Direct Measurement – 4mm PP

- 1. Anderson, et al., "Binder Characterization and Evaluation Volume 3: Physical Characterization." SHRP A-369 Report, National Research Council, 1994.
- 2. Farrar, Sui, et al. 4 mm Plate Development TRB 2011, 2012, Eurobitume 2012 and others.

Results – Case #1 Summary – LT PG

	Intermediate Aging			Extended Aging			
Binder	20 hr PAV	12 hr Loose	10 Day Compacted	40 hr PAV	24 hr Loose	20 Day Compacted	
PG 52-34	-32.8	-31.1	-32.7	-28.6	-20.1	-29.1	
PG 52-34 + 5% EP#1	-33.5	-31.0	-32.5	-30.1	-24.0	-29.8	
PG 52-34 + 2.5% BO#1+ 5% EP#1	-36.2	-33.6	-36.3	-32.9	-25.7	-30.4	
PG 58-28 + 5% BO#1	-32.6	-29.3	-31.4	-28.5	-14.8	-26.3	
PG 58-28 + 5% BO#2	-33.1	-26.2	-28.2	-27.7	-12.2	-20.6	
Average	-33.6	-30.2	-32.2	-29.6	-19.3	-27.3	
• · Max	-32.6	-26.2	-28.2	-27.7	-12.2	-20.6	
Min	-36.2	-33.6	-36.3	-32.9	-25.7	-30.4	
Range	3.68	7.42	8.14	5.19	13.51	9.81	

Data Plots

- Reference was taken after loose mix aging at 135°C (standard mix design protocol)
- Each aging type was assigned a different line style:
 - Binder aging: Solid Line
 - Loose Mix Aging: Dotted Line
 - Compacted Mix Aging: Dashed Line
- Two aging conditions defined:
 - Intermediate: AC Recovery + PAV, 12 hr loose mix, and 10 day compacted mix
 - Extended: AC Recovery + 2PAV, 24 hr loose mix, 20 day compacted mix.

Results – Case #1

PG 52-34

Results – Case #1 LT PG

PG 52-34, PG 52-34 + EP#1, PG 58-28 + BO#1

Results Case #1 LT PG - Intermediate Aging

PG 52-34
 PG 52-34 + 2.5% BO#1+ 5% EP#1
 PG 58-28 + 5% BO#2

Results Case #1 Extended Aging

PG 52-34
PG 52-34 + 2.5% BO#1+ 5% EP#1
PG 58-28 + 5% BO#2

■ PG 52-34 + 5% EP#1 ■ PG 58-28 + 5% BO#1

Case #1 Summary LT PG

- PAV aging at both conditions did not discriminate between materials as well as loose mix or compacted mix aging.
- EP#1 maintained better low temperature grading relative to PG 52-34 control and other additives, even with extended aging.
- Combination of EP#1 and BO#1 performed best.
- No benefit of additives observed in maintaining low temperature PG with extended aging. BO #2 was worst in most categories, PG 52-34 was marginally better than BO #1 at intermediate aging and substantially better after extended aging.

Results – Case #1 Summary ΔTc

	Intermediate Aging			Extended Aging			
Parameter	20 hr PAV	12 hr Loose	10 Day Compacted	40 hr PAV	24 hr Loose	20 Day Compacted	
PG 52-34	-2.6	-2.8	-1.8	-3.9	-12.1	-3.8	
PG 52-34 + 5% EP#1	-0.7	-1.8	-0.7	-2.3	-7.4	-2.8	
PG 52-34 + 2.5% BO#1+ 5% EP#1	-0.2	-1.9	-0.8	-2.1	-5.8	-2.6	
PG 58-28 + 5% BO#1	-3.1	-4.1	-2.5	-4.8	-14.8	-5.0	
PG 58-28 + 5% BO#2	-1.6	-5.3	-3.3	-5.6	-15.6	-8.6	
Average	-1.6	-3.2	-1.8	-3.7	-11.1	-4.6	
Max	-0.2	-1.8	-0.7	-2.1	-5.8	-2.6	
Min	-3.1	-5.3	-3.3	-5.6	-15.6	-8.6	
Range	2.91	3.49	2.58	3.51	9.86	5.96	

Results – Case #1 ΔTc PG 52-34, PG 52-34+EP#1, PG 58-28+BO#1 20 hr PAV 40 hr PAV **Recovered AC from Mix** 12 hr Loose Mix Aging 24 hr Loose Mix Aging Design 10 Day Compacted Mix Aging 20 Day Compacted Mix Aging 2.0 0.0 -2.0 -4.0 ູ່ວ -6.0 ∆Tc -8.0 -10.0 PAV Plot = 2 hr STOA, 20 & 40 hr PAV results Compacted Plot = 2 hr STOA, 10 & 20 day @ 85°C -12.0 Loose Plot = 2 hr STOA, 12 & 24 hr @ 135°C -14.0

-16.0

Summary of Results Intermediate Aging

Summary of Results Extended Aging

Observations

- Significant differentiation was observed after extended aging, particularly loose mix.
- EP#1 improved ΔTc at all aging conditions.
- BO#1 and BO#2 resulted in worse values of ΔTc relative to using a softer binder grade.

Case #2 "Do Nothing" Alternative

• Evaluate the effectiveness of using rejuvenators vs. not changing PG.

– Control: PG 58-28

- Additives: PG 58-28 + BO#1 and PG 58-28+BO#2
- Target climate for mix is -28°C

Case # 2 Summary LT PG Intermediate Aging

■ PG 58-28 ■ PG 58-28 + BO#1 ■ PG 58-28 + BO#2

Case #2 Summary LT PG Extended Aging

Case #2 Summary ∆Tc Intermediate Aging

Case #2 Summary ∆Tc Extended Aging

■ PG 58-28 ■ PG 58-28 + BO#1 ■ PG 58-28 + BO#2

Case #2 Observations

- Diminishing returns in using rejuvenating additives.
 - LT PG: Softening due to use of additives remains after intermediate aging. Additive effect diminishes after extended aging for BO#2.
 - ΔTc: No significant benefit of additives for most aging conditions.
- Extended aging needed to evaluate additives used to soften the binder.

Comparison of Aging Methods SARA Analysis

Comparison of Aging Methods Colloidal Index vs. R-Value

MnRoad/WRI Binder Source Study Olmstead County (2006)

- How do laboratory aging protocols evaluated relate to the field?
- Study commissioned to evaluate the effect of asphalt binder source on performance.
- Control section was PMA PG 58-34 + 20% RAP.
- Test sections were virgin mixes, with the following binder sources.
 - MN 1-2: PMA PG 58-34
 - MN 1-3: PG 58-28 Canadian Blend
 - MN 1-4: PG 58-28 Middle Eastern Blend w/REOB
 - MN 1-5: PG 58-28 Venezuelan
- No mixes contained RAS.

Laboratory vs. Field Aging (Reinke, 2015 ETG) Loose Mix

ΔTc of Binder Recovered from Aged Loose Mix

- 8 yr field aged vs. 12 hour loose mix aging at 135°C
- 8 yr field aged vs. 24 hour loose mix aging at 135°C

To represent 8 years field aging – laboratory aging at 135°C falls between 12 and 24 hours.

Laboratory vs. Field Aging (Reinke, 2015 ETG) Binder

ΔTc after 20 hour PAV ΔTc after 40 hour PAV

Conclusions

- Aging Methods
 - Both compacted mix and loose mix aging methods were more severe than PAV aging. *Related to film thickness?*
 - Presence of RAS impacted extended aging behavior. In MnDOT study 40 hr PAV and 24 hr loose mix aging were similar, for the RAS mixes differences were significant.
 - 12 hr loose mix aging and 10 day compacted mix aging produced similar results. 24 hour aging was very severe and could not be replicated by any other aging protocols.
- RAS:
 - Mix aging methods showed a significant deterioration of properties with extended aging.
 - Revisions to PP78 were intended to address RAS durability risks, PAV vs. mix aging issue requires further investigation.

Conclusions

- Rejuvenating Additives
 - EP#1 demonstrated an ability to retard aging. Low temperature PG and ΔTc were better relative to the PG 52-34 across multiple aging conditions.
 - The softening effects of BO#1 and BO#2 diminished with aging, ΔTc was worse than the PG 52-34.
 - When compared to the "do nothing" alternative of using PG 58-28 with RAS mixes, similar ΔTc values were observed after aging. LT PG was within ~one grade.

Future Work

- Finish Current Study
 - Compacted mix aging after 5 pending.
 - Chemical analysis.
- Expand Mixes Tested
 - Lower RAS loadings (i.e. 3%)
 - Designs with high RAP and conventional RAP dosages.
- Verify extracted binder results
 - Torsion bar testing and analysis.

Thank You!

Andrew Hanz, Ph.D. MTE Services Inc. andrew.hanz@mteservices.com